Unsatisfying Functions and Multiobjective Fuzzy Satisficing Design Using Genetic Algorithms

Takanori Kiyota, Yasutaka Tsuji, Eiji Kondo

研究成果: ジャーナルへの寄稿学術誌査読

12 被引用数 (Scopus)


This paper describes a new fuzzy satisficing method using genetic algorithms (GAs) for multiobjective problems. First, an unsatisfying function, which has a one-to-one correspondence with the membership function, is introduced for expressing "fuzziness." Next, the multiobjective design problem is transformed into a satisficing problem of constraints by introducing an aspiration level for each objective. Here, in order to handle the fuzziness involved in aspiration levels and constraints, the unsatisfying function is used, and the problem is formulated as a multiobjective minimization problem of unsatisfaction ratings. Then, a GA is employed to solve the problem, and a new strategy is proposed to obtain a group of Pareto-optimal solutions in which the decision maker (DM) is interested. The DM can then seek a satisficing solution by modifying parameters interactively according to preferences.

ジャーナルIEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
出版ステータス出版済み - 12月 2003

!!!All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • ソフトウェア
  • 情報システム
  • 人間とコンピュータの相互作用
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学


「Unsatisfying Functions and Multiobjective Fuzzy Satisficing Design Using Genetic Algorithms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。