TY - JOUR
T1 - Using Inverse Modeling and Dual Isotopes (δ15N and δ18O of NO3) to Determine Sources of Nitrogen Export From a Complex Land Use Catchment
AU - Adiyanti, Sri
AU - Maruya, Yasuyuki
AU - Eyre, Bradley D.
AU - Mangion, Perrine
AU - Turner, Jeffrey V.
AU - Hipsey, Mathew R.
N1 - Funding Information:
The authors are indebted to Jessica Mowat of Moreton Bay Regional Council (MBRC), who provided valuable support and assistance with necessary data. Financial support was provided primarily by the Australian Research Council (Grant LP110200975). Financial support to visiting researcher Yasuyuki Maruya was provided by JSPS KAKENHI (JP14J03382 and JP21H05178). The authors also thank the editors and the two anonymous reviewers for their thorough reviews, insightful comments, and suggestions. Open access publishing facilitated by The University of Western Australia, as part of the Wiley ‐ The University of Western Australia agreement via the Council of Australian University Librarians.
Funding Information:
The authors are indebted to Jessica Mowat of Moreton Bay Regional Council (MBRC), who provided valuable support and assistance with necessary data. Financial support was provided primarily by the Australian Research Council (Grant LP110200975). Financial support to visiting researcher Yasuyuki Maruya was provided by JSPS KAKENHI (JP14J03382 and JP21H05178). The authors also thank the editors and the two anonymous reviewers for their thorough reviews, insightful comments, and suggestions. Open access publishing facilitated by The University of Western Australia, as part of the Wiley - The University of Western Australia agreement via the Council of Australian University Librarians.
Publisher Copyright:
© 2022. The Authors.
PY - 2022/10
Y1 - 2022/10
N2 - Attributing nitrogen export to specific land use within heterogeneous catchments remains a challenge due to the spatio-temporal variability in conditions influencing the mobilization and fate of nitrogen species. This study demonstrates that the measurement of dual stable isotopes of nitrate, taken along with routine tributary measurement of nitrogen in nitrate (NO3−-N) and ammonium (NH4+-N), aids in apportioning sources of the overall nitrogen load during wet periods. An inverse modeling technique was developed to estimate the land use-specific export rates of NO3−-N and NH4+-N from the Caboolture River Catchment in Queensland, Australia. Measurements of nitrogen in streamflow at 51 locations during six sampling campaigns (May 2012 to April 2013) were made along with catchment geospatial data that was used to disaggregate sub-catchments into six land use fractions. A hydrological model was applied to compute the runoff from each fraction and water routing through the stream network. This data was used within a nitrogen mixing model with inclusion δ15NNO3 and δ18ONO3. The land uses specific export rate was computed inversely as the posterior of a Bayesian interference applied to the model. During higher rainfall periods when export rates were highest, the main land use exporting nitrogen was wetland (110 g/ha/day NO3−-N, 27 g/ha/day NH4+-N) resulted from mineralization and nitrification of organic N, followed by urban (16 g/ha/day NO3−-N, 2.3 g/ha/day NH4+-N). The advantage of using the dual isotopes in conjunction with the nitrogen concentration data was demonstrated by reduced uncertainty in the computed rates during the higher rainfall periods, relative to calculations without δ15NNO3 and δ18ONO3.
AB - Attributing nitrogen export to specific land use within heterogeneous catchments remains a challenge due to the spatio-temporal variability in conditions influencing the mobilization and fate of nitrogen species. This study demonstrates that the measurement of dual stable isotopes of nitrate, taken along with routine tributary measurement of nitrogen in nitrate (NO3−-N) and ammonium (NH4+-N), aids in apportioning sources of the overall nitrogen load during wet periods. An inverse modeling technique was developed to estimate the land use-specific export rates of NO3−-N and NH4+-N from the Caboolture River Catchment in Queensland, Australia. Measurements of nitrogen in streamflow at 51 locations during six sampling campaigns (May 2012 to April 2013) were made along with catchment geospatial data that was used to disaggregate sub-catchments into six land use fractions. A hydrological model was applied to compute the runoff from each fraction and water routing through the stream network. This data was used within a nitrogen mixing model with inclusion δ15NNO3 and δ18ONO3. The land uses specific export rate was computed inversely as the posterior of a Bayesian interference applied to the model. During higher rainfall periods when export rates were highest, the main land use exporting nitrogen was wetland (110 g/ha/day NO3−-N, 27 g/ha/day NH4+-N) resulted from mineralization and nitrification of organic N, followed by urban (16 g/ha/day NO3−-N, 2.3 g/ha/day NH4+-N). The advantage of using the dual isotopes in conjunction with the nitrogen concentration data was demonstrated by reduced uncertainty in the computed rates during the higher rainfall periods, relative to calculations without δ15NNO3 and δ18ONO3.
UR - http://www.scopus.com/inward/record.url?scp=85141693778&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141693778&partnerID=8YFLogxK
U2 - 10.1029/2022WR031944
DO - 10.1029/2022WR031944
M3 - Article
AN - SCOPUS:85141693778
SN - 0043-1397
VL - 58
JO - Water Resources Research
JF - Water Resources Research
IS - 10
M1 - e2022WR031944
ER -