TY - JOUR
T1 - Utilization of Multi-Heterodonors in Thermally Activated Delayed Fluorescence Molecules and Their High Performance Bluish-Green Organic Light-Emitting Diodes
AU - Balijapalli, Umamahesh
AU - Tanaka, Masaki
AU - Auffray, Morgan
AU - Chan, Chin Yiu
AU - Lee, Yi Ting
AU - Tsuchiya, Youichi
AU - Nakanotani, Hajime
AU - Adachi, Chihaya
N1 - Funding Information:
This work was supported financially by the Program for Building Regional Innovation Ecosystems of the Ministry of Education, Culture, Sports, Science and Technology, Japan the Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, under JST ERATO grant no. JPMJER1305, and the Japan Society for the Promotion of Science KAKENHI (grant nos. JP17J04907 JP17H01232, JP18H02047, and JP18H03902), Japan and Kyulux Inc. The authors also acknowledge Nozomi Nakamura and Keiko Kusuhara for their technical assistance with this research.
Funding Information:
This work was supported financially by the Program for Building Regional Innovation Ecosystems of the Ministry of Education, Culture, Sports, Science and Technology, Japan, the Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, under JST ERATO grant no. JPMJER1305, and the Japan Society for the Promotion of Science KAKENHI (grant nos. JP17J04907, JP17H01232, JP18H02047, and JP18H03902), Japan and Kyulux Inc. The authors also acknowledge Nozomi Nakamura and Keiko Kusuhara for their technical assistance with this research.
Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/2/26
Y1 - 2020/2/26
N2 - We report a series of pentacarbazolyl-benzonitrile derivatives such as 2,4,6-tri(9H-carbazol-9-yl)-3,5-bis(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)benzonitrile (mPyBN), 3,5-bis(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,4,6-tri(9H-carbazol-9-yl)benzonitrile (pCF3BN), 2,4,6-tri(9H-carbazol-9-yl)-3-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)-5-(3,6-diphenyl-9H-carbazol-9-yl)benzonitrile (PyPhBN), 3-(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,4,6-tri(9H-carbazol-9-yl)-5-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)benzonitrile (PyCF3BN), and 3-(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,6-di(9H-carbazol-9-yl)-5-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)-4-(9H-pyrido[3,4-b]indol-9-yl)benzonitrile (CbPyCF3BN) in which some of the carbazoles are substituted with modified 3,5-diphenyl carbazoles, exhibiting thermally activated delayed fluorescence (TADF) properties. These emitters comprised two, three, and four different types of donors, capable of bluish-green emission of around 480 nm with relatively high photoluminescence quantum yields over 90% in solution. Emitters, namely, PyPhBN, PyCF3BN, and CbPyCF3BN, composed of three and four different types of donors endowed a rather short delayed lifetime (τd) of 4.25, 5.01, and 3.65 μs in their film state, respectively. Bluish-green organic light-emitting diodes based on PyPhBN, PyCF3BN, and CbPyCF3BN exhibit a high external quantum efficiency of 20.6, 19.5, and 19.6%, respectively, with unsurpassed efficiency roll-off behavior. These results indicate that the TADF properties of multidonor type molecules can be manipulated by controlling the types and number of electron donor units.
AB - We report a series of pentacarbazolyl-benzonitrile derivatives such as 2,4,6-tri(9H-carbazol-9-yl)-3,5-bis(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)benzonitrile (mPyBN), 3,5-bis(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,4,6-tri(9H-carbazol-9-yl)benzonitrile (pCF3BN), 2,4,6-tri(9H-carbazol-9-yl)-3-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)-5-(3,6-diphenyl-9H-carbazol-9-yl)benzonitrile (PyPhBN), 3-(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,4,6-tri(9H-carbazol-9-yl)-5-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)benzonitrile (PyCF3BN), and 3-(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,6-di(9H-carbazol-9-yl)-5-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)-4-(9H-pyrido[3,4-b]indol-9-yl)benzonitrile (CbPyCF3BN) in which some of the carbazoles are substituted with modified 3,5-diphenyl carbazoles, exhibiting thermally activated delayed fluorescence (TADF) properties. These emitters comprised two, three, and four different types of donors, capable of bluish-green emission of around 480 nm with relatively high photoluminescence quantum yields over 90% in solution. Emitters, namely, PyPhBN, PyCF3BN, and CbPyCF3BN, composed of three and four different types of donors endowed a rather short delayed lifetime (τd) of 4.25, 5.01, and 3.65 μs in their film state, respectively. Bluish-green organic light-emitting diodes based on PyPhBN, PyCF3BN, and CbPyCF3BN exhibit a high external quantum efficiency of 20.6, 19.5, and 19.6%, respectively, with unsurpassed efficiency roll-off behavior. These results indicate that the TADF properties of multidonor type molecules can be manipulated by controlling the types and number of electron donor units.
UR - http://www.scopus.com/inward/record.url?scp=85081165746&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081165746&partnerID=8YFLogxK
U2 - 10.1021/acsami.9b20020
DO - 10.1021/acsami.9b20020
M3 - Article
C2 - 32020791
AN - SCOPUS:85081165746
SN - 1944-8244
VL - 12
SP - 9498
EP - 9506
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 8
ER -