Validation of a 3D hybrid cfd-dem method based on a self-leveling experiment

Liancheng Guo, Koji Morita, Hirotaka Tagami, Yoshiharu Tobita

研究成果: Chapter in Book/Report/Conference proceedingConference contribution


The postulated core disruptive accidents (CDAs) are regarded as particular difficulties in the safety analysis of liquid-metal fast reactors (LMFRs). In the CDAs, core debris may settle on the core-support structure and form conic bed mounds. Heat convection and vaporization of coolant sodium will level the debris bed, which is named "self-leveling behavior" of debris bed. To reasonably simulate such transient behavior, as well as thermal-hydraulic phenomena occurring during a CDA, a comprehensive computational tool is needed. The SIMMER code is a successful computer code developed as an advanced tool for CDA analysis of LMFRs. It is a multi-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics code coupled with a fuel-pin model and a space- and energy-dependent neutron kinetics model. Until now, the code has been successfully applied to simulations of key thermal-hydraulic phenomena involved in CDAs as well as reactor safety assessment. However, strong interactions among rich solid particles as well as particle characteristics in multiphase flows were not taken into consideration for its fluid-dynamics models. Therefore, a hybrid computational method was developed by combining the discrete element method (DEM) with the multi-fluid models to reasonably simulate the particle behaviors, as well as the thermal-hydraulic phenomena of multiphase fluid flows. In this study, 3D numerical simulation of a simplified self-leveling experiment is performed using the hybrid method. Reasonable agreement between simulation results and corresponding experimental data demonstrated the validity of the present method in simulating the self-leveling behavior of debris bed.

ホスト出版物のタイトルRadiation Protection and Nuclear Technology Applications; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Reactor Physics and Transport Theory
出版社American Society of Mechanical Engineers (ASME)
出版ステータス出版済み - 1 1 2014
イベント2014 22nd International Conference on Nuclear Engineering, ICONE 2014 - Prague, チェコ共和国
継続期間: 7 7 20147 11 2014


その他2014 22nd International Conference on Nuclear Engineering, ICONE 2014

All Science Journal Classification (ASJC) codes

  • 原子力エネルギーおよび原子力工学


「Validation of a 3D hybrid cfd-dem method based on a self-leveling experiment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。