Weakly Supervised Cell-Instance Segmentation with Two Types of Weak Labels by Single Instance Pasting

Kazuya Nishimura, Ryoma Bise

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Cell instance segmentation that recognizes each cell boundary is an important task in cell image analysis. While deep learning-based methods have shown promising performances with a certain amount of training data, most of them require full annotations that show the boundary of each cell. Generating the annotation for cell segmentation is time-consuming and human labor. To reduce the annotation cost, we propose a weakly supervised segmentation method using two types of weak labels (one for cell type and one for nuclei position). Unlike general images, these two labels are easily obtained in phase-contrast images. The intercellular boundary, which is necessary for cell instance segmentation, cannot be directly obtained from these two weak labels, so to generate the boundary information, we propose a single instance pasting based on the copy-and-paste technique. First, we locate single-cell regions by counting cells and store them in a pool. Then, we generate the intercel-lular boundary by pasting the stored single-cell regions to the original image. Finally, we train a boundary estimation network with the generated labels and perform instance segmentation with the network. Our evaluation on a public dataset demonstrated that the proposed method achieves the best performance among the several weakly supervised methods we compared.

本文言語英語
ホスト出版物のタイトルProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3184-3193
ページ数10
ISBN(電子版)9781665493468
DOI
出版ステータス出版済み - 2023
イベント23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, 米国
継続期間: 1月 3 20231月 7 2023

出版物シリーズ

名前Proceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

会議

会議23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
国/地域米国
CityWaikoloa
Period1/3/231/7/23

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Weakly Supervised Cell-Instance Segmentation with Two Types of Weak Labels by Single Instance Pasting」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル