TY - JOUR
T1 - Weighting factor estimation method for peak power reduction based on adaptive flipping of parity bits in turbo-coded OFDM systems
AU - Muta, Osamu
AU - Akaiwa, Yoshihiko
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2008
Y1 - 2008
N2 - In this paper, we propose a weighting factor (WF) estimation method for peak power reduction (PPR) based on adaptive flipping of parity carriers in a turbo-coded orthogonal frequency-division multiplexing (OFDM) system. In this PPR scheme, the peak-to-average power ratio of a turbo-coded OFDM signal is reduced with adaptive flipping of the phase of the parity carriers corresponding to the WFs. At the receiver, the WFs are estimated at a turbo decoder by exploiting the redundancy of an error-correcting code using no extra side information. The proposed WF estimation method is based on an iterative decoding of the turbo code, i.e., the turbo decoder provides not only error correction capability but the WF estimation function as well. When the proposed WF estimation method is used for the system using a turbo code with constraint length K = 4 and a code rate of R = 1/2, the instantaneous power of the OFDM signal at the complementary cumulative distribution function of 10-4 can be reduced by about 2.1 dB through the application of the PPR scheme. When the bit error rate (BER) performance is evaluated as a function of the peak signal-to-noise power ratio (PSNR), the proposed method achieves better BER performance than the case without the PPR in an attenuated 12-path Rayleigh fading condition. The improvements in BER performance as a function of PSNR are about 1.1, 2.0, and 2.1 dB at BER = 10-4 for turbo-coded OFDM signals using QPSK, 16-state quadrature amplitude modulation (QAM), and 64-state QAM schemes, respectively.
AB - In this paper, we propose a weighting factor (WF) estimation method for peak power reduction (PPR) based on adaptive flipping of parity carriers in a turbo-coded orthogonal frequency-division multiplexing (OFDM) system. In this PPR scheme, the peak-to-average power ratio of a turbo-coded OFDM signal is reduced with adaptive flipping of the phase of the parity carriers corresponding to the WFs. At the receiver, the WFs are estimated at a turbo decoder by exploiting the redundancy of an error-correcting code using no extra side information. The proposed WF estimation method is based on an iterative decoding of the turbo code, i.e., the turbo decoder provides not only error correction capability but the WF estimation function as well. When the proposed WF estimation method is used for the system using a turbo code with constraint length K = 4 and a code rate of R = 1/2, the instantaneous power of the OFDM signal at the complementary cumulative distribution function of 10-4 can be reduced by about 2.1 dB through the application of the PPR scheme. When the bit error rate (BER) performance is evaluated as a function of the peak signal-to-noise power ratio (PSNR), the proposed method achieves better BER performance than the case without the PPR in an attenuated 12-path Rayleigh fading condition. The improvements in BER performance as a function of PSNR are about 1.1, 2.0, and 2.1 dB at BER = 10-4 for turbo-coded OFDM signals using QPSK, 16-state quadrature amplitude modulation (QAM), and 64-state QAM schemes, respectively.
UR - http://www.scopus.com/inward/record.url?scp=57049181848&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57049181848&partnerID=8YFLogxK
U2 - 10.1109/TVT.2008.918729
DO - 10.1109/TVT.2008.918729
M3 - Article
AN - SCOPUS:57049181848
SN - 0018-9545
VL - 57
SP - 3551
EP - 3562
JO - IEEE Transactions on Vehicular Communications
JF - IEEE Transactions on Vehicular Communications
IS - 6
ER -