Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation

研究成果: Contribution to journalArticle査読

8 被引用数 (Scopus)

抄録

We consider the fourth order nonlinear Schrödinger type equation (4NLS). The first purpose is to revisit the well-posedness theory of (4NLS). In [8], [9], [20] and [21], they proved the time-local well-posedness of (4NLS) in H8(R) with s > 1/2 by using the Fourier restriction method. In this paper we give another proof of above result by using simpler approach than the Fourier restriction method. The second purpose is to construct the exact standing wave solution to (4NLS).

本文言語英語
ページ(範囲)1093-1105
ページ数13
ジャーナルDiscrete and Continuous Dynamical Systems
27
3
DOI
出版ステータス出版済み - 7 2010
外部発表はい

All Science Journal Classification (ASJC) codes

  • 分析
  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル