Well-Posedness for the Boussinesq-Type System Related to the Water Wave

Naoyasu Kita, Jun Ichi Segata

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

This paper studies the initial value problem of Boussinesq-type system which describes the motion of water waves. We show the time local well-posedness in the weighted Sobolev space. This is the generalization of Angulo’s work [1] from the view of regularity. Our argument is based on the contraction mapping principle for the integral equations after reducing our problem into the derivative nonlinear Schrödinger system. To overcome the regularity loss in the nonlinearity, we shall apply the smoothing effects of linear Schrödinger group due to Kenig-Ponce-Vega [7]. The gauge transform is also used to remove size restriction on the initial data.

本文言語英語
ページ(範囲)329-350
ページ数22
ジャーナルFunkcialaj Ekvacioj
47
2
DOI
出版ステータス出版済み - 2004

All Science Journal Classification (ASJC) codes

  • 分析
  • 代数と数論
  • 幾何学とトポロジー

フィンガープリント

「Well-Posedness for the Boussinesq-Type System Related to the Water Wave」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル