When is a polygonal pyramid number again polygonal?

Masanobu Kaneko, Katsuichi Tachibana

研究成果: ジャーナルへの寄稿記事

4 引用 (Scopus)

抄録

We consider a Diophantine equation arising from a generalization of the classical Lucas problem of the square pyramid: when is the sum of the first m-gonal numbers n-gonal? We use the theory of elliptic surfaces to deduce several families of parametric solutions of the problem.

元の言語英語
ページ(範囲)149-165
ページ数17
ジャーナルRocky Mountain Journal of Mathematics
32
発行部数1
DOI
出版物ステータス出版済み - 1 1 2002

Fingerprint

Polygonal number
Pyramid
Square-based pyramid
Parametric Solutions
Elliptic Surfaces
Diophantine equation
Deduce

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

これを引用

When is a polygonal pyramid number again polygonal? / Kaneko, Masanobu; Tachibana, Katsuichi.

:: Rocky Mountain Journal of Mathematics, 巻 32, 番号 1, 01.01.2002, p. 149-165.

研究成果: ジャーナルへの寄稿記事

Kaneko, Masanobu ; Tachibana, Katsuichi. / When is a polygonal pyramid number again polygonal?. :: Rocky Mountain Journal of Mathematics. 2002 ; 巻 32, 番号 1. pp. 149-165.
@article{f393dfb45e474ea485aa63cd1910c90c,
title = "When is a polygonal pyramid number again polygonal?",
abstract = "We consider a Diophantine equation arising from a generalization of the classical Lucas problem of the square pyramid: when is the sum of the first m-gonal numbers n-gonal? We use the theory of elliptic surfaces to deduce several families of parametric solutions of the problem.",
author = "Masanobu Kaneko and Katsuichi Tachibana",
year = "2002",
month = "1",
day = "1",
doi = "10.1216/rmjm/1030539614",
language = "English",
volume = "32",
pages = "149--165",
journal = "Rocky Mountain Journal of Mathematics",
issn = "0035-7596",
publisher = "Rocky Mountain Mathematics Consortium",
number = "1",

}

TY - JOUR

T1 - When is a polygonal pyramid number again polygonal?

AU - Kaneko, Masanobu

AU - Tachibana, Katsuichi

PY - 2002/1/1

Y1 - 2002/1/1

N2 - We consider a Diophantine equation arising from a generalization of the classical Lucas problem of the square pyramid: when is the sum of the first m-gonal numbers n-gonal? We use the theory of elliptic surfaces to deduce several families of parametric solutions of the problem.

AB - We consider a Diophantine equation arising from a generalization of the classical Lucas problem of the square pyramid: when is the sum of the first m-gonal numbers n-gonal? We use the theory of elliptic surfaces to deduce several families of parametric solutions of the problem.

UR - http://www.scopus.com/inward/record.url?scp=0036520729&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036520729&partnerID=8YFLogxK

U2 - 10.1216/rmjm/1030539614

DO - 10.1216/rmjm/1030539614

M3 - Article

AN - SCOPUS:0036520729

VL - 32

SP - 149

EP - 165

JO - Rocky Mountain Journal of Mathematics

JF - Rocky Mountain Journal of Mathematics

SN - 0035-7596

IS - 1

ER -