Wnt/Dkk negative feedback regulates sensory organ size in zebrafish

Hironori Wada, Alain Ghysen, Kazuhide Asakawa, Gembu Abe, Tohru Ishitani, Koichi Kawakami

研究成果: Contribution to journalArticle査読

46 被引用数 (Scopus)

抄録

Correct organ size must involve a balance between promotion and inhibition of cell proliferation. A mathematical model has been proposed in which an organ is assumed to produce its own growth activator as well as a growth inhibitor [1], but there is as yet no molecular evidence to support this model [2]. The mechanosensory organs of the fish lateral line system (neuromasts) are composed of a core of sensory hair cells surrounded by nonsensory support cells. Sensory cells are constantly replaced and are regenerated from surrounding nonsensory cells [3], while each organ retains the same size throughout life. Moreover, neuromasts also bud off new neuromasts, which stop growing when they reach the same size [4, 5]. Here, we show that the size of neuromasts is controlled by a balance between growth-promoting Wnt signaling activity in proliferation- competent cells and Wnt-inhibiting Dkk activity produced by differentiated sensory cells. This negative feedback loop from Dkk (secreted by differentiated cells) on Wnt-dependent cell proliferation (in surrounding cells) also acts during regeneration to achieve size constancy. This study establishes Wnt/Dkk as a novel mechanism to determine the final size of an organ.

本文言語英語
ページ(範囲)1559-1565
ページ数7
ジャーナルCurrent Biology
23
16
DOI
出版ステータス出版済み - 8 19 2013

All Science Journal Classification (ASJC) codes

  • 生化学、遺伝学、分子生物学(全般)
  • 農業および生物科学(全般)

フィンガープリント

「Wnt/Dkk negative feedback regulates sensory organ size in zebrafish」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル