Wreath determinants for group-subgroup pairs

Kei Hamamoto, Kazufumi Kimoto, Kazutoshi Tachibana, Masato Wakayama

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)

抄録

The aim of the present paper is to generalize the notion of the group determinants for finite groups. For a finite group G and its subgroup H, one may define a rectangular matrix of size #H×#G by X=(xhg-1)h∈H,g∈G, where {xg|g∈G} are indeterminates indexed by the elements in G. Then, we define an invariant Θ(G, H) for a given pair (G, H) by the k-wreath determinant of the matrix X, where k is the index of H in G. The k-wreath determinant of an n by kn matrix is a relative invariant of the left action by the general linear group of order n and of the right action by the wreath product of two symmetric groups of order k and n. Since the definition of Θ(G, H) is ordering-sensitive, the representation theory of symmetric groups is naturally involved. When G is abelian, if we specialize the indeterminates to powers of another variable q suitably, then Θ(G, H) factors into the product of a power of q and polynomials of the form 1-qr for various positive integers r. We also give examples for non-abelian group-subgroup pairs.

本文言語英語
ページ(範囲)76-96
ページ数21
ジャーナルJournal of Combinatorial Theory. Series A
133
DOI
出版ステータス出版済み - 7月 1 2015

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学
  • 計算理論と計算数学

フィンガープリント

「Wreath determinants for group-subgroup pairs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル