Zebrafish transforming growth factor-β-stimulated clone 22 domain 3 (TSC22D3) plays critical roles in Bmp-dependent dorsoventral patterning via two deubiquitylating enzymes Usp15 and Otud4

William Ka Fai Tse, Yun Jin Jiang, Chris Kong Chu Wong

研究成果: ジャーナルへの寄稿記事

7 引用 (Scopus)

抄録

Background Osmotic stress transcription factor 1/transforming growth factor-β-stimulated clone 22 domain 3 (Ostf1/Tsc22d3) is a transcription factor that plays an osmoregulatory role in euryhaline fishes. Its mRNA and protein levels are up-regulated under hyperosmotic stress. However, its osmoregulatory and developmental functions have not been studied in any stenohaline freshwater fishes. Zebrafish is an excellent model to perform such study to unfold the functional role of Tsc22d3. Methods We identified the zebrafish Tsc22d3 and performed knockdown studies using morpholino antisense oligonucleotide (MO). Results Zebrafish Tsc22d3 did not response to hypertonic stress and ts22d3 knockdown or overexpression by injecting MO or capped RNA did not change the transcriptional levels of any of the known ionocyte markers. To reveal the unknown function of zebrafish Tsc22d3, we performed several in situ molecular marker studies on tsc22d3 morphants and found that Tsc22d3 plays multi-functional roles in dorsoventral (DV) patterning, segmentation, and brain development. We then aimed to identify the mechanism of Tsc22d3 in the earliest stages of DV patterning. Our results demonstrated that tsc22d3 is a ventralizing gene that can stimulate the transcription of bone morphogenetic protein 4 (bmp4) and, thus, has a positive effect on the Bmp signaling pathway. Furthermore, we showed that Tsc22d3 interacts with deubiquitylating enzymes, ubiquitin-specific protease 15 (Usp15) and ovarian tumor domain containing protein 4 (Otud4). In addition, the interruption of Bmp4 signaling by double knockdown of usp15 and otud4 reduced the ventralized effects in tsc22d3-overexpressing embryos. Conclusions This is the first study to identify new developmental functions of Tsc22d3 in zebrafish. General significance Zebrafish tsc22d3 is a ventralizing gene and plays a role in early embryogenesis.

元の言語英語
ページ(範囲)4584-4593
ページ数10
ジャーナルBiochimica et Biophysica Acta - General Subjects
1830
発行部数10
DOI
出版物ステータス出版済み - 7 3 2013
外部発表Yes

Fingerprint

Ubiquitin-Specific Proteases
Transforming Growth Factors
Zebrafish
Tumors
Morpholinos
Clone Cells
Antisense Oligonucleotides
Fish
Transcription Factors
Enzymes
Genes
Bone Morphogenetic Protein 4
Neoplasms
Proteins
Osmotic Pressure
Transcription
Brain
Fishes
RNA
Messenger RNA

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology

これを引用

@article{ae7a7e5cd87b4226844b25c6cdf7c468,
title = "Zebrafish transforming growth factor-β-stimulated clone 22 domain 3 (TSC22D3) plays critical roles in Bmp-dependent dorsoventral patterning via two deubiquitylating enzymes Usp15 and Otud4",
abstract = "Background Osmotic stress transcription factor 1/transforming growth factor-β-stimulated clone 22 domain 3 (Ostf1/Tsc22d3) is a transcription factor that plays an osmoregulatory role in euryhaline fishes. Its mRNA and protein levels are up-regulated under hyperosmotic stress. However, its osmoregulatory and developmental functions have not been studied in any stenohaline freshwater fishes. Zebrafish is an excellent model to perform such study to unfold the functional role of Tsc22d3. Methods We identified the zebrafish Tsc22d3 and performed knockdown studies using morpholino antisense oligonucleotide (MO). Results Zebrafish Tsc22d3 did not response to hypertonic stress and ts22d3 knockdown or overexpression by injecting MO or capped RNA did not change the transcriptional levels of any of the known ionocyte markers. To reveal the unknown function of zebrafish Tsc22d3, we performed several in situ molecular marker studies on tsc22d3 morphants and found that Tsc22d3 plays multi-functional roles in dorsoventral (DV) patterning, segmentation, and brain development. We then aimed to identify the mechanism of Tsc22d3 in the earliest stages of DV patterning. Our results demonstrated that tsc22d3 is a ventralizing gene that can stimulate the transcription of bone morphogenetic protein 4 (bmp4) and, thus, has a positive effect on the Bmp signaling pathway. Furthermore, we showed that Tsc22d3 interacts with deubiquitylating enzymes, ubiquitin-specific protease 15 (Usp15) and ovarian tumor domain containing protein 4 (Otud4). In addition, the interruption of Bmp4 signaling by double knockdown of usp15 and otud4 reduced the ventralized effects in tsc22d3-overexpressing embryos. Conclusions This is the first study to identify new developmental functions of Tsc22d3 in zebrafish. General significance Zebrafish tsc22d3 is a ventralizing gene and plays a role in early embryogenesis.",
author = "Tse, {William Ka Fai} and Jiang, {Yun Jin} and Wong, {Chris Kong Chu}",
year = "2013",
month = "7",
day = "3",
doi = "10.1016/j.bbagen.2013.05.006",
language = "English",
volume = "1830",
pages = "4584--4593",
journal = "Biochimica et Biophysica Acta - General Subjects",
issn = "0304-4165",
publisher = "Elsevier",
number = "10",

}

TY - JOUR

T1 - Zebrafish transforming growth factor-β-stimulated clone 22 domain 3 (TSC22D3) plays critical roles in Bmp-dependent dorsoventral patterning via two deubiquitylating enzymes Usp15 and Otud4

AU - Tse, William Ka Fai

AU - Jiang, Yun Jin

AU - Wong, Chris Kong Chu

PY - 2013/7/3

Y1 - 2013/7/3

N2 - Background Osmotic stress transcription factor 1/transforming growth factor-β-stimulated clone 22 domain 3 (Ostf1/Tsc22d3) is a transcription factor that plays an osmoregulatory role in euryhaline fishes. Its mRNA and protein levels are up-regulated under hyperosmotic stress. However, its osmoregulatory and developmental functions have not been studied in any stenohaline freshwater fishes. Zebrafish is an excellent model to perform such study to unfold the functional role of Tsc22d3. Methods We identified the zebrafish Tsc22d3 and performed knockdown studies using morpholino antisense oligonucleotide (MO). Results Zebrafish Tsc22d3 did not response to hypertonic stress and ts22d3 knockdown or overexpression by injecting MO or capped RNA did not change the transcriptional levels of any of the known ionocyte markers. To reveal the unknown function of zebrafish Tsc22d3, we performed several in situ molecular marker studies on tsc22d3 morphants and found that Tsc22d3 plays multi-functional roles in dorsoventral (DV) patterning, segmentation, and brain development. We then aimed to identify the mechanism of Tsc22d3 in the earliest stages of DV patterning. Our results demonstrated that tsc22d3 is a ventralizing gene that can stimulate the transcription of bone morphogenetic protein 4 (bmp4) and, thus, has a positive effect on the Bmp signaling pathway. Furthermore, we showed that Tsc22d3 interacts with deubiquitylating enzymes, ubiquitin-specific protease 15 (Usp15) and ovarian tumor domain containing protein 4 (Otud4). In addition, the interruption of Bmp4 signaling by double knockdown of usp15 and otud4 reduced the ventralized effects in tsc22d3-overexpressing embryos. Conclusions This is the first study to identify new developmental functions of Tsc22d3 in zebrafish. General significance Zebrafish tsc22d3 is a ventralizing gene and plays a role in early embryogenesis.

AB - Background Osmotic stress transcription factor 1/transforming growth factor-β-stimulated clone 22 domain 3 (Ostf1/Tsc22d3) is a transcription factor that plays an osmoregulatory role in euryhaline fishes. Its mRNA and protein levels are up-regulated under hyperosmotic stress. However, its osmoregulatory and developmental functions have not been studied in any stenohaline freshwater fishes. Zebrafish is an excellent model to perform such study to unfold the functional role of Tsc22d3. Methods We identified the zebrafish Tsc22d3 and performed knockdown studies using morpholino antisense oligonucleotide (MO). Results Zebrafish Tsc22d3 did not response to hypertonic stress and ts22d3 knockdown or overexpression by injecting MO or capped RNA did not change the transcriptional levels of any of the known ionocyte markers. To reveal the unknown function of zebrafish Tsc22d3, we performed several in situ molecular marker studies on tsc22d3 morphants and found that Tsc22d3 plays multi-functional roles in dorsoventral (DV) patterning, segmentation, and brain development. We then aimed to identify the mechanism of Tsc22d3 in the earliest stages of DV patterning. Our results demonstrated that tsc22d3 is a ventralizing gene that can stimulate the transcription of bone morphogenetic protein 4 (bmp4) and, thus, has a positive effect on the Bmp signaling pathway. Furthermore, we showed that Tsc22d3 interacts with deubiquitylating enzymes, ubiquitin-specific protease 15 (Usp15) and ovarian tumor domain containing protein 4 (Otud4). In addition, the interruption of Bmp4 signaling by double knockdown of usp15 and otud4 reduced the ventralized effects in tsc22d3-overexpressing embryos. Conclusions This is the first study to identify new developmental functions of Tsc22d3 in zebrafish. General significance Zebrafish tsc22d3 is a ventralizing gene and plays a role in early embryogenesis.

UR - http://www.scopus.com/inward/record.url?scp=84879473472&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84879473472&partnerID=8YFLogxK

U2 - 10.1016/j.bbagen.2013.05.006

DO - 10.1016/j.bbagen.2013.05.006

M3 - Article

C2 - 23665588

AN - SCOPUS:84879473472

VL - 1830

SP - 4584

EP - 4593

JO - Biochimica et Biophysica Acta - General Subjects

JF - Biochimica et Biophysica Acta - General Subjects

SN - 0304-4165

IS - 10

ER -