Zeta functions for the spectrum of the non-commutative harmonic oscillators

Takashi Ichinose, Masato Wakayama

研究成果: Contribution to journalArticle査読

20 被引用数 (Scopus)

抄録

This paper investigates the spectral zeta function of the non-commutative harmonic oscillator studied in [PW1, 2]. It is shown, as one of the basic analytic properties, that the spectral zeta function is extended to a meromorphic function in the whole complex plane with a simple pole at s=1, and further that it has a zero at all non-positive even integers, i.e. at s=0 and at those negative even integers where the Riemann zeta function has the so-called trivial zeros. As a by-product of the study, both the upper and the lower bounds are also given for the first eigenvalue of the non-commutative harmonic oscillator.

本文言語英語
ページ(範囲)697-739
ページ数43
ジャーナルCommunications in Mathematical Physics
258
3
DOI
出版ステータス出版済み - 9 1 2005

All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Zeta functions for the spectrum of the non-commutative harmonic oscillators」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル