Zeta functions of periodic cubical lattices and Cyclomatic-like polynomials

研究成果: Contribution to journalArticle査読

抄録

Zeta functions of periodic cubical lattices are explicitly derived by computing all the eigenvalues of the adjacency operators and their characteristic polynomials. We introduce cyclotomic-like polynomials to give factorization of the zeta function in terms of them and count the number of orbits of the Galois action associated with each cyclotomic-like polynomial to obtain its further factorization. We also give a necessary and sufficient condition for such a polynomial to be irreducible and discuss its irreducibility from this point of view.
本文言語英語
ページ(範囲)93-121
ジャーナルAdvanced Studies in Pure mathematics
84
DOI
出版ステータス出版済み - 1 1 2020

フィンガープリント

「Zeta functions of periodic cubical lattices and Cyclomatic-like polynomials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル